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Executive Summary

When running out of time on a multiple-choice test such as the Law School Admission Test (LSAT), some
test takers are likely to respond rapidly to the remaining unanswered items in an attempt to get some items
right by chance. Because these responses will tend to be incorrect, the presence of “rapid-guessing behavior”
could cause these items to appear more difficult statistically than they really are. Using data
(correct/incorrect responses and response times) that were simulated to match real data, the present study
found that this is indeed the case. Using the simulated response times, an attempt was made to remove
responses that appeared to be the result of rapid-guessing behavior (because the responses had such short
response times). A mathematical model was fit to the response time distribution of each item, and responses
that were more likely, according to the model, to come from the rapid-guessing distribution (based on
response times) were removed. After the fast responses (rapid guesses) were removed, estimated item
difficulty was very close to the “true” item difficulty used to simulate the data. When test data are
contaminated by speededness (rapid guesses), the present study shows that response times, if available, can
be used to identify and remove rapid guesses and thereby recover the true item difficulty more accurately. If
the LSAT is converted to a computer-delivered format, response times will be available, and we will be able
to determine if rapid guesses are altering our estimates of item difficulty, and if so, to remove the rapid
guesses and their influence.

Abstract

When running out of time on a multiple-choice test such as the Law School Admission Test (LSAT), some
test takers are likely to respond rapidly to the remaining unanswered items in an attempt to get some items
right by chance. Because these responses will tend to be incorrect, the presence of “rapid-guessing behavior”
could cause these items to appear more difficult than they really are. Using simulated data, the present
study found that when rapid-guessing behavior is present, items appear more difficult and less
discriminating than they really are. Using response times, an attempt was made to remove responses that
appeared to be the result of rapid-guessing behavior. A two-state mixture model was fit to the response time
distribution of each item, and responses that were more likely to come from the rapid-guessing distribution
(according to the model) were removed. After removing the fast responses (rapid guesses), the item
parameters, item characteristic curves (ICCs), and information functions were recovered more accurately.
When test data are contaminated by speededness (rapid guesses), the present study shows that response
times, if available, can be used to identify and remove rapid guesses and thereby recover the true item
parameters more accurately.

Introduction

Both classical test theory and item response theory (IRT) assume that test takers answer items after fully
considering them. An incorrect answer is taken to mean that the test taker was unable-to answer the item
(i.e., the item was too difficult for the test taker). This is how we interpret an incorrect answer on the Law
School Admission Test {LSAT). Most achievement and aptitude tests, including the LSAT, are administered
with fairly strict time limits, primarily for administrative reasons. Such tests are called “speeded” or
”partially speeded” because the speed at which a test taker works will affect his or her test score. On
speeded tests, performance may decline because test takers run out of time. Test takers may begin to
respond randomly, or after only briefly skimming the items. On such items, an incorrect answer does not
necessarily mean that the item was too difficult for the test taker; the test taker may have been fully capable
of answering the item correctly, given more time.

Item parameters clearly will be affected by random responding. If test takers respond randomly to items,
these items will appear more difficult than they really are (e.g., Oshima, 1994). One solution to this problem
for test construction and other purposes is to use a different set of item parameters for items when they are
administered at the end of a separately timed test section (because these items are typically the most
affected by speededness). Another solution is to hold item position constant when an item is reused (or from
a pretest, when initial item parameters are typically obtained, to the operational use of the items, when the
items contribute to test taker scores, as done on the LSAT).

The author would like to thank Mark D. Reckase for his helpful comments on an earlier draft.
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These options may provide workable solutions in paper-and-pencil test construction and item analysis,
but as testing programs consider moving to computer-administered formats, better solutions to the problem
of random responding may exist. Better solutions will be especially important if the test will be given adaptively.
In a computer adaptive test (CAT), an item can potentially be used in any position in the test. For a CAT to
be successful, item parameters must not change depending on item position.

Although random responding is probably not the only cause of item-parameter instability, controlling for
or eliminating random responding would assuredly lead to more stable and accurate parameter estimates.
Yamamoto (1995) developed a model that takes random responding into account when estimating item
parameters. His model (HYBRID) assumes that test takers start a test by engaging in a strategy of thoughtful
response, but at each successive item, some test takers switch to a strategy of random response. In his model,
thoughtful responses are modeled by IRT. Under the random response strategy, the probability of a correct
response is independent of test taker ability. HYBRID does not allow for more than one switch in strategy (as
might happen if a test taker responds randomly only to a certain content area or item type), and on difficult
items HYBRID may not be able to distinguish random responses from thoughtful responses if items are arranged
in order of difficulty. However, using such a model is undoubtedly better than ignoring the random
responses completely.

If one assumes that random responses are made quickly (perhaps as time expires), response times (if
available) provide an additional way to identify responses as random. Using response times, Schnipke
(1995) and Schnipke and Scrams (1997) showed that “rapid guesses” were obviously present on the
analytical section of a computer-administered version of the Graduate Record Examinations (GRE) General
Test. The items on the last half of the test showed evidence of a second underlying distribution of very fast,
primarily incorrect, responses. Schnipke and Scrams (1997) modeled the response times with a two-state
mixture model and showed that the response-time distribution for each item could be described very well
by a two-state model. The two states were labeled “rapid-guessing behavior” and “solution behavior,” and
the accuracy rates were consistent with the labels: for each item, the rapid-guessing state had a relatively
flat, low accuracy rate that was near chance, and the solution state had a relatively flat, higher accuracy rate
(determined by item difficulty, by definition); the accuracy rate in the area of overlap between the states was
an increasing function of response time.

In the present study, simulated data! were used to address two research questions: How contaminated by
speededness are item-parameter estimates? and What can be done about it? To address the first question
(how contaminated), data (correct/incorrect responses and response times) were generated with and
without rapid guesses, and the IRT parameters, item characteristic curves (ICCs), and item information
functions for the two conditions were compared to each other and to the true.values. To address the second
question (what can be done about it), two methods were used to remove what appeared to be rapid guesses
(using the modeling techniques of Schnipke and Scrams, 1996), and the item parameters, ICCs, and item
information functions were recomputed and again compared to the true values.

Method
Simulated Test Takers

Ability (8) parameters were randomly sampled from a standard normal distribution for 5,000 simulated
test takers.

Item Parameters
Two types of parameters were simulated for 30 items: IRT parameters to describe the probability that a

randomly chosen test taker of a given ability will answer the item correctly when engaged in solution
behavior, and parameters to describe the response-time distribution for each item.

T A fixed-length nonadaptive design was simulated. Such data could be collected operationally whenever blocks of items (e.g., testlets)
are administered together (e.g., Lewis & Sheehan’s, 1990, Bayesian mastery testing design; Luecht, Nungester, & Hadadi’s, 1996, com-
puterized adaptive sequential testing design; and Reese & Schnipke’s, 1996, two-stage testlet design).
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IRT Parameters

The unidimensional, three-parameter logistic (3PL) IRT model was used to describe the probability that a
randomly chosen test taker of a given ability would answer the item correctly when engaged in solution
behavior.2 The 3PL model is given by

1_Ci

-1.7a; o- b)

Pycorrect|8) =c; +
l+e

ey

where
6 is the test taker ability parameter,
Pi(correct18) is the probability that a randomly chosen test taker with ability 6 answers item i correctly,
aj is the discrimination parameter for item 1,
bi is the difficulty parameter for item i, and

ci is the lower asymptote parameter for item i (the probability that a test taker of very low ability will
answer the item correctly).

The discrimination (2) parameters were randomly sampled from a normal distribution with a mean of 0.8
and a standard deviation of 0.3. The difficulty (b) parameters were randomly sampled from a normal
distribution with a mean of 0 and a standard deviation of 1. The lower asymptote (c) parameters were
randomly sampled from a uniform distribution ranging from .15 to .25 (roughly comparable to 5-option
multiple-choice items). The a, b, and ¢ parameters were generated independently. The “items” then were
sorted by the difficulty (b) parameter, from lowest to highest, to imitate a multiple-choice test with
increasing item difficulty. The sorted items were labeled 1 through 30, item 1 being the easiest and item 30
the most difficult. The generating parameters are shown in Table 1.

ZAccuracy for rapid-guessing behavior was set at chance (0.2), regardless of ability, thus IRT parameters are not necessary for the rapid-
guessing state.



TABLE 1
Item parameters used to generate accuracy and response times for each item

IRT Parameters Response Time Parameters
Item a b c m O p mg G¢
1 0.900 -2.310  0.166 68.813  0.620 0.000  7.389 1
2 0.558 -2.196  0.215 52.108  0.514  0.000  7.389 1
3 0.342 -2.052  0.188 85.095 0415 0.000  7.389 1
4 0.711  -1.348  0.178 49659 0520 0001 7389 1
5 0.729 -1.166  0.217 95915 0479  0.008  7.389 1
6 0965 -1.166  0.151 52.842  0.522  0.011 7.389 1
7 1248 -0.898 0.214 48042 0527 0011 7.389 1
8 1.063 -0.764 0214 79919 0366  0.026  7.389 1
9 0.969 -0.514  0.233 74007 0452 0039  7.389 1
10 1452 -0.441  0.154 52.144 0580  0.039  7.389 1
1 1371 -0353  0.199 48.780 0483 0077  7.389 1
12 0875 -0342  0.242 71355 0509  0.084  7.389 1
13 0355 -0.280  0.250 56.677  0.540 0114  7.389 1
14 1368 -0.217  0.240 77.911 0521 0122 7389 1
15 1157 -0089 0217 - 52586 0533 0.154  7.389 1
16 1265 0067  0.207 47918 0506  0.154  7.389 1
17 0.647 0144 0232 70.440 0510 0157  7.389 1
18 0.406 039  0.161 85885 0427 0162  7.389 1
19 0.736 0437 0.173 60.409 0531 0174  7.389 1
20 0.504 0439 0.234 56.952 0502 0175  7.389 1
21 0.856 0492  0.221 78830 0478 0184  7.389 1
22 0961  0.684  0.204 46.245 0497 0212 7389 1
23 0.888 0.715  0.169 63.184 0478 0257  7.389 1
24 0.452  0.759  0.195 38380 0559 0260  7.389 1
25 1.013 0830 0.156 46.020 0530 0266  7.389 1
26 1.157 1498  0.160 53.757 0380 0.282  7.389 1
27 0.858  1.605  0.168 81.453 0462 0305 7.389 1
28 0735 1715 0205 53287 0544 0317  7.389 1
29 1.167  1.748  0.247 53.128 0547 0392  7.389 1
30 0352 2209  0.198 48464  0.612 0429  7.389 1

Response Time Parameters

Response time distributions for each item were based on work by Schnipke and Scrams (1997). Schnipke
and Scrams found that a two-state mixture model (e.g., Luce, 1986) described the response-time distribution
for items on a speeded test very well. The two-state mixture model is given by

Foi=piFgi+(1-pyFg; (2)

where
Foi is the observed response time distribution for item i,
pi is the proportion of rapid guesses on item i,
EGi is the rapid-guessing response-time distribution for item i, and
Es; is the solution behavior response-time distribution for item i.




Schnipke and Scrams found that rapid-guessing and solution behavior distributions could be described
well by lognormal distributions. The lognormal probability density function is given by

1 exp { —[In¢/m)]2 }
Vto(2n) 207

fi=
- (3

where
t is the response time (RT),
m is the scale parameter (the median of the RTs), and
O is the shape parameter (the standard deviation of the In(RT)’s; Evans, Hastings, & Peacock, 1993).

The present study also used a mixture of lognormal distributions. Thus, to specify the response time
distribution for each item, 5 parameters are required: p, m¢ and O, (the subscript G indicates the
rapid-guessing lognormal distribution), and ms and o5 (the subscript S indicates the solution behavior
lognormal distribution). These 5 parameters were simulated for each of the 30 items (described next) and
were used to generate the response times for each simulated test taker on each item.

Proportion of rapid guesses (p). The proportion of rapid guesses for each item, p;, was specified such that the
proportions were very similar to what Schnipke and Scrams (1997) found in empirical data. The true
proportion of rapid guesses, p, for each item is given in Table 1. The true proportion of rapid guesses was
specified as an increasing function of item number (as was item difficulty, which created a positive
relationship between item difficulty and the amount of rapid-guessing behavior).

Rapid-guessing behavior distribution: mg and 0. Schnipke and Scrams found that the rapid-guessing
distribution could be constrained to be the same across all items and still fit the response times. They
concluded that rapid-guessing behavior is essentially the same across items (i.e., it is independent of item
characteristics). Thus in the present study, a common rapid-guessing distribution was used for all items
with mg = 7.389 seconds, and o = 1.0 In(seconds). (These values are similar to what Schnipke and Scrams
found in real data.)

Solution behavior distribution: mg and Os. The median and standard deviation of the solution behavior
response time distribution varied across items, but were independent of item characteristics (such as
difficulty, discrimination, lower asymptote, or item position). The median for each item, ms, (which is
expressed in seconds) was sampled from a lognormal distribution with median of 60.34 seconds and
standard deviation of 1.0 In(seconds), and G (which is expressed in In[seconds]) was sampled from a
lognormal distribution with median of 1.65 seconds and standard deviation of 0.08 In(seconds). A
correlation of -0.3 between m; and s was built into the parameter selection as suggested by the results of
Schnipke and Scrams. The resulting solution behavior parameters, given in Table 1, are similar to those
found by Schnipke and Scrams.

Generating Responses and Response Times

To generate responses (correct/incorrect) and response times for each test taker item pair, it was first
determined if the test taker was in the rapid-guessing or solution behavior state on the item, then accuracy
and response times were generated, as described below. To determine in which state the test taker was, a
random uniform number from 0 to 1 was generated. If this number was less than p (the proportion of rapid
guesses on the item), the test taker was assigned to the rapid-guessing state for that item. Otherwise, the test
taker was assigned to the solution state for the item. In this way, the proportion of test takers assigned to the
rapid-guessing state was approximately p. The assignment to the rapid-guessing or solution behavior state
was independent of ability.

If the test taker was assigned to the solution behavior state, accuracy on the item was determined from a
probabilistic application of the 3PL IRT model (Equation 1) based on the test taker’s simulated ability (8)
and the item’s IRT parameters. Response time was randomly sampled from a lognormal distribution with
the solution behavior parameters for that item (shown in Table 1).

If the test taker was assigned to the rapid-guessing state, the probability of a correct response on the item
was set equal to chance (0.2), regardless of the item’s IRT parameters. (A random number from 0 to 1 was
generated, and if the number was less than 0.2, the response was correct; otherwise it was incorrect.)

9 BEST COPY AVAILABILE
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Response time was randomly sampled from a lognormal distribution with the rapid-guessing parameters
(shown in Table 1). A dataset of 0’s and 1’s (incorrect/correct) and response times was thus created.

A dataset was also created with p = 0 for all items (i.e., no rapid guesses). All test takers were in the
solution behavior state on all items. Accuracy followed the 3PL model and response times followed the
solution behavior distribution (with ms and ©;). By comparing the item-parameter estimates from the two
datasets (with and without rapid guesses), the degree of item-parameter contamination can be determined,
addressing the first research question, How contaminated by speededness are item parameter estimates?

Classifying Responses as Rapid Guesses

To address the second question, What can be done about item-parameter contamination? two methods
were used to classify fast responses as rapid guesses (ignoring, of course, the true classifications used to
generate the data). Responses that were classified as rapid guesses were removed during item-parameter
estimation to see if the true item parameters could be recovered more accurately.

To classify responses as rapid guesses, two techniques were used: one that was probabilistic, and one that
was based on a cutoff. Both techniques relied on fitting a two-state mixture model to the response times for
each item. Thus before discussing the classification techniques, response-time modeling will be discussed.

Modeling Response Times

Nonlinear regression was used to fit the two-state mixture model (Equation 2) to the cumulative
distribution function (CDF) of response times for each item. Specifically, the Levenberg-Marquardt
algorithm, which is used by SPSS to fit unconstrained models, was used to fit the model to each CDF
(described in Norusis, 1994). The underlying distributions (the rapid-guessing and solution behavior
distributions) were specified as lognormal distributions (Equation 3). The rapid-guessing distribution was
not constrained to be the same across items during the estimation of the two-state model parameters
(although the data were generated that way) Thus 5 variables were free to vary for each item: p (the
estimated proportion of rapid guesses) mg\ and O (the lognormal parameter estimates for the
rapid-guessing distribution), and ms and O (the lognormal parameter estimates for the solution
behavior distribution).

The true and estimated parameters are shown in Figures 1-3. As shown in Figure 1, the proportion of
rapid guesses was recovered fairly well, although the estimated proportion was sometimes a little high and
sometimes a little low. As shown in Figure 2, the median, m;, of the solution behavior distribution for each
item was recovered quite well, although 65 was recovered slightly less well for some items (items 6, 17, 19,
24, 28, 29, and 30).

As shown in Figure 3, the median of the rapld guessing behavior distribution, mg, was recovered well for
most items. The exceptions are item 6, where mG was far too high (which corresponds to the estimated
proportion of rapid guesses on item 6 being too high), and some of the items toward the beginning of the
test. Likewise, O, for items toward the beginning of the test was not recovered well, although 6; was
recovered well for items toward the end of the test. This may be explained by the fact that the true
proportion of rapid guesses was very small at the beginning of the test so the rapid-guessing distribution
could not be estimated well, whereas toward the end of the test the proportion of rapid guesses was large
enough to provide stable estimates of the rapid-guessing distribution.
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FIGURE 3. True and estimated median and standard deviation of the rapid-guessing behavior distribution for each item

Classification Methods

The estimated parameters were used to classify responses as rapid guesses using the following two
methods.

Responses classified probabilistically. The first method of classifying responses as rapid guesses attempted to
emulate the response-time distribution that would have arisen if there had been no rapid-guessing behavior.
That is, the method attempted to sample a solution behavior distribution from the mixture distribution.
Based on the mixture model, the proportion of responses at a given response time (in one second intervals)
that should be in each distribution was calculated. The responses at each response time were randomly
assigned to the two distributions to match the expected proportions. In this sense, the method was
probabilistic; there was some probability that a given response would be assigned to a particular state
(rapid guessing or solution behavior). The responses that were actually rapid guesses and the responses that
were classified as rapid guesses were not exactly the same, of course, but the proportion of responses
assigned to each distribution was correct according to the model. (The random assignment to the two
underlying distributions was independent of accuracy, so although the proportion of responses classified
followed the model, the accuracy rates were not quite right.) The proportion of responses classified as rapid
guesses is shown in Table 2 (as is the actual proportion3 for comparison).

3The actual proportion of rapid guesses in the dataset is not p (although they are very similar). p was used to generate the proportion of
rapid guesses, but because of random variability, the numbers are not exactly the same.
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TABLE 2

Actual and classified proportions of rapid guesses in the simulated data, and the cutoff
(in seconds) used for the cutoff-based approach

Proportion Classified as Rapid Guesses

Item Actual Probabilistic Cutoff Value of Cutoff
Proportion Method Method (in seconds)

1 0.000 0.000 0.000 1

2 0.000 0.000 0.000 1

3 0.000 0.000 0.000 1

4 0.001 0.000 0.000 1

5 0.007 0.006 0.006 16.7
6 0.012 0.077 0.017 14.8
7 0.009 0.005 0.005 ' 6.6
8 0.026 - - - -

9 0.036 0.032 0.029 18.1
10 0.038 0.024 0.024 9.3
11 0.078 0.085 0.068 14.5
12 0.090 0.086 0.077 18
13 0.108 0.083 0.078 12.7
14 0.121 0.125 0.107 21.1
15 0.154 0.134 0.120 14.7
16 0.149 0.177 0.127 16
17 0.158 0.220 0.158 24.6
18 0.155 0.156 0.146 27.5
19 0.179 0.158 0.150 16.4
20 0.175 0.166 0.153 17.6
21 0.178 0.180 0.163 25
22 0.208 0.198 0.167 15.3
23 0.255 0.262 0.232 23
24 0.272 0.299 0.243 15.2
25 0.268 0.264 0.225 16
26 0.281 0.282 0.256 23
27 0.301 0.314 0.288 30
28 0.315 0.282 0.258 16.6
29 ' 0.393 0.427 0.377 22.3
30 0.427 0.381 0.355 15.6

Note. On item 8, a solution was not found. Schnipke and Scrams (1996) had similar trouble on several items
when p was very small.

Responses classified based on a cutoff. The second method of classifying responses as rapid guesses was
based on a cutoff. The cutoffs were established based on the two-state mixture model. The estimated
parameters were used to determine, for each item, where the two underlying distributions crossed,
weighted by the proportion of test takers in each distribution (p; or 1 - p;). The point at which the
distributions cross is where a response is equally likely to come from either the rapid-guessing or solution
behavior distribution. This point was used as the cutoff. Once the cutoff for each item was established, all
responses with a response time less than the cutoff were classified as rapid guesses, and all responses
with a response time greater than the cutoff were classified as solution behavior responses. The cutoffs that
were used are given in Table 2, as are the proportions of responses that were classified as rapid guesses
using this method.
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Treatment of the Responses Classified as Rapid Guesses

Responses classified as rapid guesses were treated as if the item that gave rise to the so-called rapid guess
had never been presented to that test taker. To do this, the response code was changed to the “never
presented” code (which is not technically true, but it produces the desired result). In this way, responses that
appear to be rapid guesses do not influence parameter estimation. Responses classified as solution behavior
were not altered. The recoding of responses classified as rapid guesses was done independently (not
additively) for the two methods of classification, of course.

Parameter Estimation
BILOG (Mislevy & Bock, 1990) was used to estimate item parameters for the following four conditions:

» no rapid guessing (no rapid guessing was simulated during data generation),
» with rapid guessing (rapid-guessing behavior was simulated during data generation),

» rapid guessing removed probabilistically (rapid-guessing behavior was simulated during data
generation; some responses were classified as rapid guesses using the probabilistic method and
were recoded as never presented), and

» rapid guessing removed with a cutoff (rapid-guessing behavior was simulated during data
generation; some responses were classified as rapid guesses based on a cutoff and were recoded as
never presented).

The third and fourth conditions (where rapid guessing was removed) were modifications of the second
condition (which included rapid guessing). That is, the exact same responses were used for each simulated
test taker item pair, except for the responses that were classified as rapid guesses. For responses classified as
rapid guesses, the response code was changed to indicate that the test taker had not received that item, as
discussed previously.

In order to set the scale so that the item-parameter estimates from BILOG could be compared, the final
estimated ability distribution was scaled to the standard normal. For the condition that includes rapid
guessing, forcing the ability distribution to be standard normal will not reflect the true distribution.
Although the original ability distribution was standard normal, the inclusion of rapid-guessing behavior
distorts the original distribution. Scaling the final estimated ability distribution to the standard normal in
this case is not “correct” in the sense that we know the original was distorted. However, in real test data, we
would not necessarily know that speed (and hence rapid-guessing behavior) was a factor influencing test
scores, and we would scale the final estimated ability distribution to the standard normal. Thus, for the
simulated data which included rapid guesses, the ability estimates were scaled as would be done with real
test data, and these results were compared to the case in which there was no rapid guessing and to the cases
in which an attempt was made to remove rapid guesses.

The IRT item parameters were estimated for each item under each of the four conditions. It was expected
that the “no rapid guessing” condition would recover the true item parameters very well and that the “with
rapid guessing” condition would not recover the item parameters as well at the end of the
test where the proportion of rapid guessing is the highest. How much of a difference there is between
these conditions addresses the first research question, How contaminated by speededness are
item-parameter estimates?

The second research question, What can be done about the contamination? is addressed by the last two
conditions where some responses were classified as rapid guesses and were then removed. The point was to
remove responses likely to be rapid guesses based on response times (ignoring the true classifications used
to generate those data and which would not be known in real test data) to see if the true item parameters
could be recovered more accurately.
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Results
Item Difficulty

Figure 4 shows the true difficulty (b) parameters, as well as the 4 estimated b values for each item
(1 estimated value for each of the 4 conditions). When rapid guesses were included in parameter estimation,
the items toward the end of the test appeared more difficult (higher 6 values) than they really are. When
there were no rapid guesses and when responses classified as rapid guesses were removed (using either
method), the true difficulty parameters were recovered quite well, as shown in Figure 4.
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FIGURE 4. True difficulty (b) parameter and estimates (bs) for each condition on each item

As test-level indices of how well the difficulty parameters were recovered, the correlation between the
true and estimated b’s and the bias and root mean squared error (RMSE) were calculated. As shown in the
first row of Table 3, the correlation between b and § was lowest when rapid guesses were included, highest
when there were no rapid guesses, and in between when rapid guesses were removed. All of the
correlations were quite high, though, for the difficulty (b) parameter.

TABLE 3
Correlations between the true and estimated IRT parameters for the four conditions
Rapid Guessing Removed
No Rapid With Probabilistic Cutoff
Guessing  Rapid Guessing Method Method
Difficulty (b) 9970 9888 9922 9938
Discrimination (a) 9841 7876 9208 9305
Lower asymptote (c) 5398 3502+ 5692 6036

*Not significantly different from 0 at o = .05.

The bias statistic was computed for each condition to indicate whether difficulty (b) was over- or underestimated
overall (i.e., across all items). As shown in the first row of Table 4, b was overestimated (large positive bias)
when rapid guesses were included (confirming Figure 4). When rapid guesses were removed using either method,
there was essentially no bias in b, as shown in Table 4, again confirming Figure 4. Likewise, RMSE, which
indicates the overall amount of error in the estimates across items, was highest when rapid guesses were
present and was greatly reduced when rapid guesses were removed using either method, as shown in Table 4.
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TABLE 4
Bias and RMSE of the estimated IRT parameters for the four conditions
Rapid Guessing Removed
No Rapid With Probabilistic Cutoff
Guessing  Rapid Guessing Method Method
Bias
Difficulty (b) -0.0221 0.1769 0.0023 -0.0128
Discrimination (a) -0.0239 -0.2084 -0.1008 -0.0836
Lower asymptote (c) 0.0000 -0.0394 -0.0169 -0.0138
RMSE
Difficulty (b) 0.0085 0.1540 0.0306 0.0221
Discrimination (a) 0.0042 0.0846 0.0274 0.0224
Lower asymptote (c) 0.0009 0.0032 0.0011 0.0010

Item Discrimination

Figure 5 shows the true and estimated discrimination (a) parameters for each item. The true discrimination pa-
rameters generally were not recovered as well as the difficulty parameters, as can be seen in the second row
of Table 3 (the correlations are lower than those for the b parameter). When no rapid guesses were present,
the discrimination parameters were recovered fairly well, as indicated by the small values of bias and RMSE
shown in Table 4. When rapid guesses were included, the discrimination parameters were recovered the least
well (as shown by the correlation between a and 2, bias, RMSE and visually in Figure 5). The discrimination pa-
rameter was underestimated on most items when rapid guesses were present (there was a large negative bias
as shown in Table 4). When the responses classified as rapid guesses were removed (using either method),
the discrimination parameters were recovered better than when rapid guesses were included, but not as well
as the “no rapid guessing” condition, as indicated by bias and RMSE and visually (Figure 5).
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Lower Asymptote

Figure 6 shows the true and estimated lower asymptote (c) parameters for each item. The true lower
asymptote parameters were not recovered as well as the difficulty or discrimination parameters (e.g., the
correlations between ¢ and ¢, shown in the last row of Table 3, are lower than those for difficulty or
discrimination). As with the difficulty and discrimination parameters, however, when rapid guesses were
included, the lower asymptote parameters were recovered the least well (the correlation between ¢ and ¢
was the lowest as shown in Table 3, and bias and RMSE were the highest as shown in Table 4). When the
responses classified as rapid guesses were removed (using either method), the lower asymptote parameters
were recovered at least as well as when no rapid guesses were present, as shown in Figure 6 and Tables 3

’ and 4.
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FIGURE 6. True lower asymptote (c) parameter and estimates ( ¢’s) for each condition on each item
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Item Characteristic Curves

To compare the combined effects of the IRT 4, b, and ¢ parameters, the ICC for each item was calculated.

The ICC provides the probability that a test taker with a given ability will answer the item correctly. Figure 7
shows the true and estimated ICCs for several items throughout the simulated test (items 10, 15, 20, 25, and

30). As shown in Figure 7, when rapid guesses were included, the ICC was artificially low for items toward
the end of the test; a test taker appears to have a smaller probability of answering an item correctly than is
really the case. This, of course, corresponds to the difficulty parameter being too high. (The slopes of the

ICCs were also altered by rapid-guessing behavior, which is related to the a’s and ¢’s being recovered less
well.) When there were no rapid guesses, or when responses classified as rapid guesses were removed

(using either method), the ICCs were recovered very well.
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Item Information Functions

Because item information is often used to select items for both linear and adaptive tests, it is useful to
determine the effects of rapid-guessing behavior on item information functions. Figure 8 shows the
information functions for the same items shown in Figure 7. On most items, when rapid-guessing behavior
was present, the information functions were underestimated; the items appear to be less informative than
they really are. This is related to the discrimination (a) parameters being underestimated. On item 30, the
a parameter was overestimated when rapid-guessing behavior was present (as shown in Figure 5), and item
information was correspondingly inflated. On all items toward the end of the test, the ability (8) level at
which the item provides maximum information was inflated when rapid-guessing behavior was present
(because the items seemed more difficult). When rapid-guessing behavior was removed using either method,
item information (including the 8 level at which the item provides maximum information) was recovered
more accurately for all items.
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Discussion

On speeded multiple-choice tests such as the LSAT, some test takers are likely to respond very quickly to
items as time expires in the hopes of getting some items right by chance. This is often a wise strategy for test
takers to use, but these rapid responses cause problems for practitioners who analyze test data. These fast
responses, or “rapid guesses,” will distort item-parameter estimates if they are included during parameter
estimation. As shown in the present study, when rapid guesses are present, items appear more difficult and
less discriminating than they really are.

When tests are administered on computers, response times can be collected. Response times provide clues
about which responses are rapid guesses and which are not. In the present study, response times were
simulated to match distributions found by Schnipke and Scrams (1997) and were used to classify responses
as rapid guesses to see if removing these responses would provide more accurate parameter estimates. A
simulation was required because the true parameters needed to be known.

Two methods were used to classify responses as rapid guesses. One attempted to emulate a
solution-behavior-only distribution by sampling from the mixture distribution. Some, but not all, of the
fastest response times were removed so that the remaining number of responses at each response time
matched the number expected in the underlying solution-behavior distribution. The other method used a
cutoff to classify responses. The cutoff was placed where a response was equally likely to come from either
underlying distribution. Responses made faster than the cutoff were more likely to come from the
rapid-guessing distribution and therefore were classified as rapid guesses. This method truncated the
distribution, whereas the first method did not.

The two methods for classifying responses as rapid guesses produced virtually identical results. The
parameter estimates were recovered equally well with the two methods. Because the cutoff approach is
easier to implement and easier to understand, the cutoff approach is recommended, although the other
approach works well, too.

When new tests are constructed, the new tests may not have the desired psychometric properties if
inaccurate item parameters (e.g., ones derived for items at the end of a speeded test) are used. This may be a
problem especially in adaptive tests because item selection and test taker ability estimation depend heavily
on item parameters. If response times are available, it is recommended that practitioners look for evidence
of rapid-guessing behavior in their data and correct for it if it is there, especially if the items will be used in
adaptive tests or if the item will change position in subsequent forms of the test.

There are several limitations to the present study; these include the following: (1) ability and rapid-guessing
behavior were generated independently; (2) solution-behavior response-time distributions were generated
independently of item difficulty; (3) the test design was a nonadaptive fixed-length test; and (4) the proportion of
rapid guesses and item difficulty both increased as a function of item position. For generalizing the results,
the biggest limitation is probably that ability and rapid-guessing behavior were simulated independently. Ability
and rapid-guessing behavior probably are related in real data, but because the exact nature of this relationship is
not known, no dependency was incorporated. Future work will investigate the relationship between ability
and rapid-guessing behavior and between solution-behavior response-time distributions and item difficulty.

In terms of test design, a nonadaptive fixed-length test was used because that is the simplest case, and as
such, provided a good starting place. Future work will consider an adaptive design. There are test designs
other than the nonadaptive fixed-length design that would provide data that could be analyzed with the
techniques used here. For instance, a design that uses testlets may provide appropriate data. A testlet refers
to a group of items that are administered as a unit (Wainer & Kiely, 1987). If the items within the testlets are
not adaptively administered, items toward the end of each testlet may contain rapid-guessing behavior. One
can imagine rearranging items into new testlets based on item parameters, and we would want the parameter
estimates to be free of rapid-guessing behavior. Designs based on such testlets include Lewis and Sheehan’s
(1990) Bayesian mastery testing design; Luecht, Nungester, and Hadadi’s (1996) computer administered
sequential testing design; and Reese and Schnipke’s (1996) two-stage testlet design.

Oshima (1994) found random guessing distorts difficulty estimates the least when items are arranged in
order of ascending difficulty (if random guessing also increases toward the end of the test). This was the
case in the present study (both item difficulty and rapid guessing increased toward the end of the test). The
difficulty estimates would be expected to be more distorted by rapid guesses if items were not increasingly
difficult toward the end of the test, and in this situation it might be even more important to counteract the
effects of rapid-guessing behavior by attempting to remove such responses.
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